Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI ideas on AWS.
In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled variations of the models too.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses support learning to boost reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A key identifying feature is its reinforcement knowing (RL) action, which was used to improve the design's actions beyond the standard pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adapt more efficiently to user feedback and goals, eventually enhancing both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, implying it's equipped to break down complicated questions and factor through them in a detailed manner. This assisted reasoning procedure allows the model to produce more accurate, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT abilities, aiming to generate structured reactions while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has actually captured the market's attention as a versatile text-generation model that can be incorporated into different workflows such as representatives, sensible thinking and information analysis tasks.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture enables activation of 37 billion criteria, allowing efficient reasoning by routing questions to the most appropriate expert "clusters." This approach allows the design to focus on various issue domains while maintaining general efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more effective designs to imitate the behavior and thinking patterns of the larger DeepSeek-R1 model, utilizing it as a teacher model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest releasing this model with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous content, and evaluate designs against crucial security criteria. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limitation boost, create a limitation boost demand and reach out to your account team.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Establish approvals to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to present safeguards, prevent hazardous content, and evaluate models against crucial security requirements. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to assess user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The general flow involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following areas show reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 design.
The design detail page supplies essential details about the model's capabilities, rates structure, and execution standards. You can discover detailed use instructions, consisting of sample API calls and code bits for integration. The model supports numerous text generation jobs, including material production, code generation, and question answering, utilizing its reinforcement learning optimization and CoT thinking capabilities.
The page also includes deployment choices and licensing details to help you get begun with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, select Deploy.
You will be prompted to configure the deployment details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of circumstances, get in a number of instances (in between 1-100).
6. For example type, select your instance type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised.
Optionally, you can set up innovative security and infrastructure settings, including virtual private cloud (VPC) networking, service role authorizations, and file encryption settings. For a lot of use cases, the default settings will work well. However, for releases, you may wish to review these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin utilizing the design.
When the deployment is complete, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive interface where you can experiment with different prompts and change design specifications like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal results. For instance, material for reasoning.
This is an excellent method to check out the model's reasoning and text generation abilities before integrating it into your applications. The play area offers immediate feedback, assisting you understand how the model reacts to various inputs and letting you tweak your triggers for ideal results.
You can quickly evaluate the model in the play area through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform reasoning utilizing a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures inference specifications, and sends a request to create text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 convenient methods: using the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both approaches to assist you select the method that best fits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The design browser displays available designs, with details like the supplier name and design capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card reveals key details, consisting of:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if appropriate), suggesting that this design can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the design
5. Choose the design card to view the design details page.
The model details page consists of the following details:
- The design name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab includes essential details, such as:
- Model description. - License details.
- Technical requirements.
- Usage guidelines
Before you release the design, it's suggested to examine the model details and license terms to verify compatibility with your usage case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, use the instantly created name or produce a customized one.
- For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, get in the number of circumstances (default: 1). Selecting appropriate instance types and counts is important for expense and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for precision. For larsaluarna.se this model, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
- Choose Deploy to release the design.
The deployment procedure can take numerous minutes to finish.
When implementation is complete, your endpoint status will change to InService. At this point, the model is prepared to accept reasoning demands through the endpoint. You can monitor the deployment progress on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the release is total, you can conjure up the design utilizing a SageMaker runtime client and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get going with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for releasing the design is provided in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Clean up
To avoid undesirable charges, finish the steps in this area to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the model utilizing Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace releases. - In the Managed deployments section, find the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're deleting the correct deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop ingenious solutions using AWS services and accelerated compute. Currently, he is focused on developing methods for fine-tuning and enhancing the inference performance of large language models. In his downtime, Vivek enjoys hiking, viewing motion pictures, and attempting various foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing options that help clients accelerate their AI journey and unlock business worth.